If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-10=5
We move all terms to the left:
y^2-10-(5)=0
We add all the numbers together, and all the variables
y^2-15=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $
| x+7^2=-192 | | x=13/12 | | 1/8(2p-1)-7/3p-p-4/6=0 | | (x+10)*15=15x+150 | | 35-18x=18 | | -2/7x+6+1/7=18 | | 7=-3/5t-2 | | 3x^2-35x+78=0 | | 3x^2-35+78=0 | | 7m-2/3=11 | | 6x^2-70x+156=0 | | 2r²+11r-216=0 | | 45(2)+20y=280 | | 45(4)+20y=280 | | 45(5)+20y=280 | | 6x+4-3x+2=12 | | 4x^2+12x+9=625 | | x²+4x-8=-18 | | x+12=13x | | n(6+11n+3n2+3n2+n3)(4+n)=0 | | 101.25+.25x=x | | 2b(7b+5)=0 | | 3a+8÷7=5 | | y=1/2(6)=4 | | 2m+11/3=9 | | 6/5=7x+4 | | 5z-15=42 | | 3/8k-1/3=1/4 | | 3/8y-5=-2 | | 81a2=1 | | 8-6=5(x+1)+3x-11 | | 17/22x=4 |